FIZYCZNE SKUTKI ZMIAN WILGOTNOŚCI ZIARNA JĘCZMIENIA

Wanda Woźniak

Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN, ul. Doświadczalna 4, 20-290 Lublin e-mail: wanda@demeter.ipan.lublin.pl

S treszczenie. Ziamo jęczmienia odmiany Rastik o wilgotności 10% nawilżano w wodzie w czasie 1, 3, 6, 9 i 12 godzin, a następnie wysuszono w warunkach pokojowych do wilgotności początkowej. Ziarno zostało prześwietlone, a powstałe w wyniku nawilżania pęknięcia zarejestrowano na kliszach rentgenowskich. Stan fizyczny bielma określano liczbą pęknięć wewnętrznych. Z każdego ziarniaka wycięto próbkę rdzeniową i poddawano ją jednoosiowemu ściskaniu. Wyznaczono: maksymalne naprężenie ściskające (σ_{max}), moduł sprężystości ziarna (E), odkształcenie (ε_{max}) i pracę właściwą (w_{max}). Okazało się, że jęczmień nieoplewiony Rastik charakteryzuje się bardzo małą odpornością na pękanie bielma. Średnia liczba pęknięć dla ziarniaków próby kontrolnej wynosiła 13,6 i rosła z czasem nawilżania – do 3 godzin. Nawilżanie dłuższe niż 3 godziny obniżyło wytrzymałość na ściskanie i moduł sprężystości ziarna. Zaobserwowano podobne zmiany odkształcenia ziarna i energii właściwej wywołanych wcześniejszym nawilżaniem. Po wyraźnym wzroście – do dziewiątej godziny nawilżania, nastąpił spadek tych wielkości. Badane cechy mechaniczne ziarna jęczmienia nie korelowały z liczbą pęknięć wewnętrznych.

Stowa kluczowe: ziarno jęczmienia, rentgenografia, uszkodzenia wewnętrzne, właściwości mechaniczne

WSTĘP

Procesy nawilżania ziarna zbóż występują już w okresie przedzbiorowym, kiedy dojrzałe ziarniaki są wystawione na działanie deszczu lub rosy, jak i w trakcie kondycjonowania gdy ziarno jest przygotowywane do przerobu [2,6]. Procesy wymiany ciepła i masy jakie zachodzą podczas nawilżania i suszenia ziarna powodują naprężenia wewnętrzne, których rezultatem są pęknięcia poprzeczne bielma [7,8]. W tym miejscu pojawia się pytanie, na ile pęknięcia bielma mogą zmieniać fizyczne właściwości ziarna, a w szczególności właściwości mechaniczne, które są najbardziej związane ze stanem struktury bielma [1,3-5]. Zastosowanie nie niszczącej techniki rentgenograficznej pozwala ocenić stan uszkodzeń wewnętrznych ziarna, które następnie może być poddane testom określającym skutki fizyczne i biologiczne tych uszkodzeń.

Celem badań było określenie wpływu nawilżania ziarna jęczmienia na zmianę stanu fizycznego bielma i w konsekwencji na zmianę jego właściwości mechanicznych.

MATERIAŁ I METODYKA

Badania przeprowadzono na pojedynczych ziarniakach jęczmienia jarego, nieoplewionego, odmiany Rastik. Ziarniaki o wilgotności 10% moczono w wodzie o temperaturze pokojowej w czasie 1, 3, 6, 9 i 12 godzin, wysuszono do wilgotności początkowej (w warunkach pokojowych) i prześwietlono. Na kliszach rentgenowskich zarejestrowano po 150 obrazów ziarniaków dla każdego wariantu doświadczenia, tj. próby kontrolnej i 5 czasów nawilżania (po 30 sztuk na jednej kasecie pomiarowej, w 5 powtórzeniach). Stan uszkodzenia bielma określano liczbą pęknięć. Łącznie przeanalizowano obrazy 900 ziarniaków. Na fotografii 1 pokazano przykładowo obrazy rentgenowskie ziarniaków jęczmienia Rastik – przed nawilżaniem (a) oraz po nawilżaniu i wysuszeniu (b).

Fot. 1. Rentgenowskie obrazy ziarniaków jęczmienia a) przed nawilżaniem b) po nawilżaniu i suszeniu **Photo. 1.** X-ray images of barley kernels: a) before wetting, b) after wetting and drying

Do badania właściwości mechanicznych ziarna zastosowano metodę jednoosiowego ściskania ziarna pozbawionego końców. Właściwości mechaniczne wyznaczano z prawa Hooke'a, co jest najbardziej wiarygodne z uwagi na eliminację zarówno wpływu geometrii ziarna jak i kontaktu chropowatych powierzchni okrywy owocowo-nasiennej z płytami obciążającymi.

Z każdego ziarniaka wycinano próbkę o wysokości 4 mm i określano pole powierzchni podstaw oraz pole powierzchni przekroju w jej centralnej części (rys. 1). Testy mechaniczne wykonano przy użyciu maszyny wytrzymałościowej Instron model 6022, stosując głowicę tensometryczną o zakresie pomiarowym do 1 kN i prędkości

Rys. 1. Ziarniak pozbawiony końców jako dwa stożki nieobrotowe

Fig. 1. A truncated kernel presented as two nonrotation cones

deformacji 0,4 mm·min⁻¹. Rejestrowano siłę w funkcji przemieszczenia (rys. 2).

Siłę wyznaczano z dokładnością ± 1 N, a przemieszczenie $\pm 0,01$ mm.

Rys. 2. Krzywa siła-przemieszczenie w teście jednoosiowego ściskania wycinków ziarniaka Fig. 2. Force-deformation curve for uniaxial compression of core specimens between parallel flat plates

Wytrzymałość próbki σ_{max} (maksymalne naprężenie ściskające) wyznaczano ze wzoru [12,13]:

$$\sigma_{max} = \frac{F_{max}}{\overline{A}} \tag{1}$$

gdzie: F_{max} – maksymalna siła (N), \overline{A} – średnie pole powierzchni przekroju ziarna (mm^2).

Traktując ziarniak pozbawiony końców jako dwa stożki nieobrotowe złożone większymi podstawami (rys. 1), średnie pole powierzchni przekroju określano ze wzoru:

$$\overline{A} = \frac{A_z + 2A_{\max} + A_b}{4} \tag{2}$$

gdzie: A_z , A_b – pole powierzchni podstaw – od strony zarodka i bródki (mm²), A_{max} – pole powierzchni największego przekroju ziarna (mm²).

Moduł sprężystości E wyznaczano z prawa Hooke'a (w przeprowadzonym eksperymencie przyjęty zakres odkształceń sprężystych wynosił 50-100N):

$$E = \frac{\sigma}{\varepsilon} = \frac{F \cdot l_o}{\overline{A} \cdot \Delta l} \tag{3}$$

gdzie: E – moduł sprężystości (MPa), σ – naprężenie ściskające (MPa), ε – odkształcenie (%), F - siła ściskająca (N), lo - wysokość początkowa próbki (mm), Δl – zmiana wysokości próbki (mm), \overline{A} – średnie pole powierzchni przekroju próbki (mm²).

Pracę właściwą w wyznaczano ze wzoru:

$$w = \frac{W}{V} \tag{9}$$

gdzie: W – praca odkształcenia (pole obszaru zawartego między wykresem ściskania a osią odciętych – rysunek 2), V – objętość ziarniaka pozbawionego końców.

Przy założeniu, że objętość ziarniaka V równa jest objętości dwóch stożków nieobrotowych złączonych większymi podstawami:

$$V = \frac{1}{6}l_o(A_z + A_b + 2A_{sr} + \sqrt{A_z A_{sr}} + \sqrt{A_b A_{sr}})$$
(10)

pracę właściwą wyznaczano ze wzoru:

ı

$$v = \frac{6W}{l_o(A_z + A_b + 2A_{sr} + \sqrt{A_z A_{sr}} + \sqrt{A_b A_{sr}})}$$
(11)

Testom mechanicznym poddano łącznie 360 ziarniaków, tj. po 60 ziarniaków z każdego wariantu doświadczenia.

WYNIKI

Na rysunku 3 pokazano zmianę wilgotności ziarna jęczmienia podczas moczenia w wodzie. Rysunek ten informuje do jakiej wilgotności nawilżone zostało ziarno, zanim, po wysuszeniu, poddano je detekcji rentgenowskiej i testom mechanicznym.

Rys. 3. Zależność wilgotności ziarna jęczmienia od czasu nawilżania

Fig. 3. Moisture content of barley grain vs. wetting time

Wyniki badań rentgenograficznych i testów mechanicznych poddano analizie statystycznej. Analiza wariancji w układzie "liczba pęknięć wewnętrznych x czasy nawilżania" wykazała, że zadane czasy nawilżania spowodowały istotne zróżnicowanie średnich. Średnia liczba pęknięć (dla 150 ziarniaków) rosła w miarę wzrostu czasu nawilżania ziarna – do 3 godzin, po dłuższym nawilżaniu malała (rys. 4). Na uwagę zasługuje fakt niezwykle małej odporności na pękanie bielma. W próbie kontrolnej, którą stanowiło ziarno nie nawilżane laboratoryjnie, zanotowano średnio ponad 13 pęknięć. Pęknięcia te powstały zapewne w warunkach polowych. Po nawilżeniu ziarna do około 22% (3 godziny) i wysuszeniu zarejestrowano maksimum pęknięć wewnętrznych, tj. średnio około 16. Kiedy ziarno osiągnęło wilgotność około 30% (nawilżanie ponad 3 godziny) i zostało wysuszone, widoczne wcześniej pęknięcia nie były już widoczne.

Fig. 4. Mean number of cracks and 95% Tukey intervals of confidence of barley grain as affected by different wetting times

Analiza wariancji w układzie "parametry mechaniczne, tj. maksymalne naprężenie σ_{max} , moduł sprężystości *E*, praca właściwa *w* x czasy nawilżania" wykazała, że zadane czasy nawilżania nie spowodowały istotnego zróżnicowania średnich między kolejnymi krokami nawilżania. Zaobserwowano jednak jednoznaczne tendencje zmian tych cech. Moduł sprężystości ziarna i wytrzymałość na ściskanie utrzymuje się na poziomie kontroli dla ziarna nawilżanego w czasie 1 i 3 godzin (rys. 5 i 6). Dopiero nawilżanie dłuższe, tj. 6 i więcej godzin powoduje spadek wartości tych parametrów. Istotne różnice wystąpiły jedynie między kontrolą i dwunastogodzinnym nawilżaniem. Po 12 godzinach nawilżania moduł sprężystości zmalał o 15%, a wytrzymałość o około 10%.

Charakter zmian energii właściwej i odkształcenia ziarna wywołanych wcześniejszym jego nawilżaniem jest podobny (rys. 7 i 8). Odkształcenie i energia właściwa rosły dla ziarna nawilżanego do 9 godzin, po czym gwałtownie zmalały. Dwunastogodzinne nawilżenie spowodowało spadek ich wartości do poziomu bliskiego próbie kontrolnej. Jedynie sześcio i dziewięciogodzinne nawilżenie ziarna istotnie zróżnicowało te parametry w stosunku do próby kontrolnej.

Analiza wariancji w układzie "parametry mechaniczne x liczba pęknięć wewnętrznych" nie wykazała istotnego wpływu wzrostu liczby uszkodzeń bielma

wynikających z jego nawilżania na zmianę wytrzymałości, modułu sprężystości, odkształcenia ani energii właściwej. Zatem to nie stan fizyczny bielma, wyrażany liczbą pęknięć, ma istotny wpływ na jego właściwości mechaniczne. Nawilżenie i wysuszenie ziarna, pomimo skutków ubocznych jakim są pęknięcia, powoduje zmiany właściwości mechanicznych ziarna.

Rys. 5. Średni moduł sprężystości i 95% przedziały ufności Tukey'a, ziarna jęczmienia odmiany Rastik nawilżanego w różnym czasie

Fig. 5. Mean modulus of elasticity and 95% Tukey intervals of confidence of barley grain as affected by different wetting times

Rys. 6. Średnia wytrzymałość na ściskanie i 95% przedziały ufności Tukey'a, ziarna jęczmienia odmiany Rastik nawilżanego w różnym czasie

Fig. 6. Mean compressive stress and 95% Tukey intervals of confidence of barley grain as affected by different wetting times

Fig. 7. Mean strain and 95% Tukey intervals of confidence of barley grain as affected by different wetting times

Rys. 8. Średnia energia właściwa odkształcenia i 95% przedziały ufności Tukey'a, ziarna jęczmienia odmiany Rastik nawilżanego w różnym czasie

Fig. 8. Mean specific work and 95% Tukey intervals of confidence of barley grain as affected by different wetting times

WNIOSKI

1. Ziarniaki jęczmienia nieoplewionego odmiany Rastik charakteryzowały się bardzo dużą podatnością na pękanie bielma. Średnia liczba pęknięć dla ziarniaków próby kontrolnej wynosiła 13,6. Średnia liczba pęknięć zarejestrowanych w suchych ziarniakach wzrastała z czasem ich wcześniejszego nawilżania do 15,8 (po 3 godzinach nawilżania). Po 6, 9 i 12 godzinach nawilżania liczba widocznych, na rentgenogramach, pęknięć gwałtownie zmalała do około 10.

2. Nawilżanie ziarna dłuższe niż 3 godziny spowodowało spadek modułu sprężystości o 15% i wytrzymałości na ściskanie o około 10%.

3. Zmiany odkształcenia ziarna i energii właściwej wywołanych wcześniejszym nawilżaniem były podobne. Po wyraźnym wzroście – do dziewiątej godziny nawilżania, nastąpił wyraźny spadek tych wielkości.

4. Badane parametry mechaniczne ziarna jęczmienia nie korelują z liczbą pęknięć wewnętrznych.

PIŚMIENNICTWO

- 1. Fortes M., Okos M. R.: Changes in physical properties of corn during drying. Trans. ASAE, 23(4), 1004-1008, 1980).
- 2. Geodecki M.: Pre-harvest internal damage to wheat grain. Doctoral thesis (in Polish), Instytut Agrofizyki PAN, Lublin, 1999.
- 3. Glenn G. M., Younce F. L., Pitts M. J.: Fundamental physical properties characterizing the hardness of wheat endosperm. Journal of Cereal Science, 13, 179-194, 1991.
- 4. Gunasekaran S., Paulsen M. R.: Breakage resistance of corn as a function of drying rates. Trans. ASAE, 28(6), 2071-2076, 1985.
- 5. Kang Y. S., Spillman C. K., Steele J. L., Chung D. S.: Mechanical properties of wheat. Transaction of the ASAE, 38(2), 573-578, 1995.
- 6. Weller C. L., Paulsen M. R., Steinberg M. P.: Stress cracking and breakage susceptibility as affected by moisture content at harvest for four yellow dent corn hybrids. Transaction of the ASAE, 33(3), 863-869, 1990.
- 7. Woźniak W., Styk W.: Internal damage to wheat grain as results of wetting and drying. Drying Technology, vol.14(2), 349-367, 1996.
- Woźniak W., Styk W., Geodecki M.: High relative humidity as a cause of inner damage of wheat grain. Int. Agrophysics, 8 (2), 377-381, 1994.

PHYSICAL RESULTS OF BARLEY GRAIN MOISTURE TREATMENT

Wanda Woźniak

Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin e-mail: wanda@demeter.ipan.lublin.pl

A b stract. The naked barley grain cv. Rastik, with an initial moisture content of 10%, was wetted during 1, 3, 6 and 9 hours and then dried in room conditions to the initial moisture content. Inner cracks in grain, caused by those processes, were detected using soft X-ray technique. The physical condition of the endosperm was described by the number of cracks. Barrel-shaped core samples, cut from selected kernels, were than subjected to uniaxial compression tests to determine the compressive strength (σ_{max}), modulus of elasticity (*E*), strain (ε_{max}) and specific work energy (w_{max}). The naked barley cv. Rastik is characterized by very low resistance to endosperm cracking. The average number of cracks for control sample amounted to 13.6 and grew with moistening time – up to 3 hours. Moistening time longer than 3 h decreased the compression strength and elasticity modulus of grain. Similar changes were observed in grain strain and specific work energy caused by earlier moistening. After a significant increase – till the ninth hour of moistening, a drop of these values were observed. No significant correlation was noted between these properties and numbers of inner cracks.

Keywords: barley kernels, X-ray, inner cracks, mechanical properties